EasyHome7

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

ВЕРСИЯ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ v155 (05.03.2025) ВЕРСИЯ ИНТЕРФЕЙСА ИНЖЕНЕРА v50 (25.03.2025)

Уважаемый пользователь!

Спасибо за то, что выбрали наш продукт. Мы придерживаемся общей тенденции к созданию интуитивно-понятных интерфейсов пользователя, а саму систему делаем полностью защищённой от нештатных ситуаций. Надеемся, что этот документ поможет Вам в использовании системы и ответит на большинство возникающих вопросов. При появлении нерешённых вопросов, пожеланий, идей – просьба направлять информацию к Нам и Нашим инсталляторам. Нам ВАЖНО ВАШЕ МНЕНИЕ.

Инструкция пользователя содержит описание базовых функций используемых на определённом объекте и **не содержит полного описания всех возможностей** системы. Для ознакомления с полным перечнем возможных функций системы см. инструкцию инсталлятора **EH_Installer_Manual_ru.pdf**

Дата редакции документа: 25-03-2025

Составители: Забоев Г.А.

Адрес публикации документа: http://www.HomeLogicSoft.com

СОДЕРЖАНИЕ

1.	Общие сведения	4
2.	Главное окно (инженерная версия)	5
3.	Настройки подключения (служебный раздел)	6
4.	MultiCluster T20 (инженерная версия)	7
5.	Кластеры С1 и С2 (инженерная версия)	7
6.	Кластер СЗ (инженерная версия) и кондиционеры серверной	9
7.	Кластер С3 и С4 (инженерная версия) и кондиционеры кроссовых	12
8.	Кластер С4 устройства PLK5.3 (инженерная версия) и вентустановки	13
9.	Кластер C4 устройства D5(PLK5.2) (инженерная версия) и вентустановки	17
10.	Кластер C4 устройства D6(PLK5.1) (инженерная версия) и вентустановки	20
11.	Вентиляция зала ПВ5/ПВ6 – поддержание влажности и температуры	22
12.	Вентиляция фондов ПВ2/ПВ3 – поддержание влажности и температуры	23
13.	Система защиты протечек стояков по счётчикам и датчикм давления	24
14.	Щит управления дренажными насосами и алгоритм	25
15.	Климат и бытовые кондиционеры	27
16.	Автоматическое управление климатом	29
17.	Системные аварии	30
18.	Журнал аварий	31

1. Общие сведения

Система EasyHome состоит из нескольких программируемых логических контроллеров (ПЛК), программы работы контроллера EasyHomePLC и программы интерфейса пользователя EasyHome.

Контроллер принимает электрические сигналы с датчиков и других устройств, содержит управляющий процессор с программой алгоритмов и настройками, выдаёт электрические сигналы управления на реле, приводы и другие устройства.

Программа интерфейса пользователя подключается к контроллеру PLK0.2 в щите ЩУВиД-0.1, который служит единым сервером визуализации для всех контроллеров объекта. Интерфейс содержит графическую и текстовую информацию выделенную для пользователя, поддерживает постоянную связь с контроллером по Ethernet сети и визуализирует состояние системы. Так же, программа интерфейса отправляет в контроллер все команды пользователя незамедлительно. Программа интерфейса выглядит и работает одинаково на всех поддерживаемых ОС – Windows, Android, iOS и др.

Система EasyHome позволяет на уровне пользователя:

- Управлять вручную подключенным оборудованием или включать алгоритмы автоматического управления
- Визуализирует основные параметры работы оборудования и нештатаные ситуации

Система EasyHome позволяет на уровне инженера:

- Менять привязки выключателей и датчиков к группам света
- Создавать и сохранять СЦЕНЫ для разных систем (Освещение, Климат, Электронагрузки, Дополнительные устройства)
- Настраивать расписания работы различных систем и настройку событий для их запуска
- Настраивать некоторые параметры оборудования
- Вести мониторинг BCEX параметров оборудования интегрированных в систему EasyHome на данном объекте

Все штатные и расширенные АВТО функции (выполнены с помощью Свободных функций) - выделены желтым цветом.

2. Главное окно (инженерная версия)

Элементы главного окна программы представлены на рисунке 1. Из главного окна программы можно получить доступ к разделам системы: Освещению, Климату, Подсистемам, Вентиляции, прочим разделам и Сервисной информации.

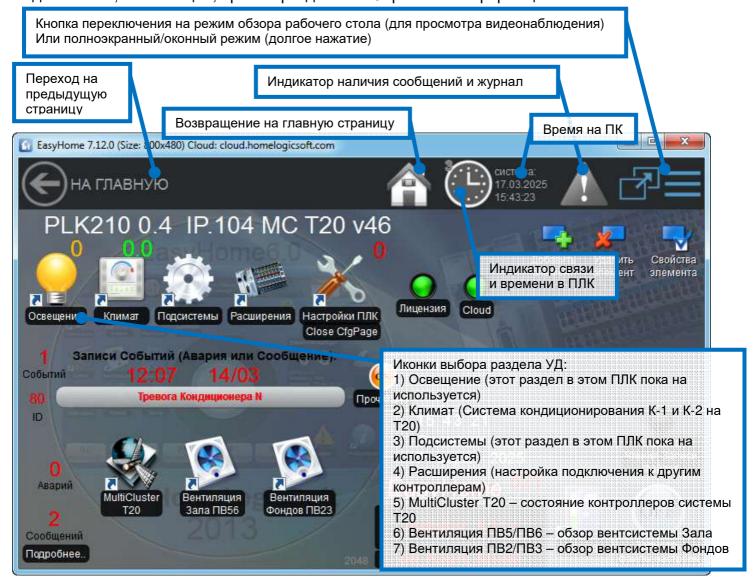


Рисунок 1 – Главное окно программы EasyHome (инженерная версия)

Для Windows возможна работа программы в оконном режиме с размером окна от 640х480 до любого большего и полноэкранного. Масштабирование фонового изображения и элементов происходит автоматически.

3. Настройки подключения (служебный раздел)

Страница «Подключение» отображает настройки подключения к контроллеру (рисунок 2). И имеет следующие параметры:

- ІР адрес контролера в локальной сети или в Интернет сети;
- ІР порт (обычно 502, может меняться для работы через роутеры);
- Период цикла опроса контролера (рекомендован 1000мс);
- Смещение внутри контролера (для ПЛК Beckhoff 4000, для остальных ПЛК 0);
- Переподключение периодически закрывает и открывает IP соединение, что может требоваться для стабильной работы в некоторых сетевых условиях.
- Синхронизация времени (позволяет синхронизировать время на контролере);

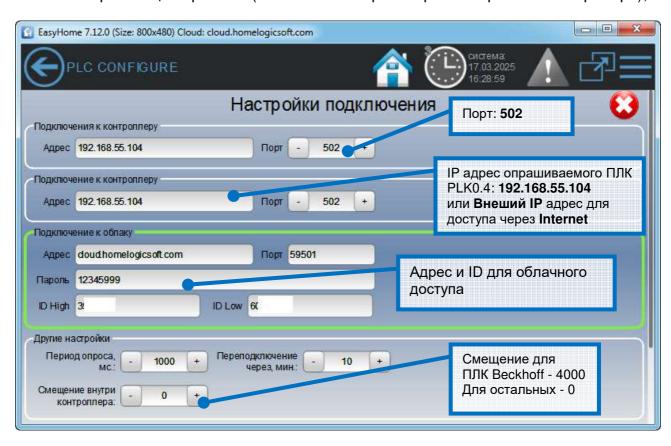


Рисунок 2 - Страница «Настройка подключения»

4. MultiCluster T20 (инженерная версия)

Страница «MultiCluster T20» отображает состояние связи всех контроллеров и некоторых подсистем объекта (рисунок 3). Содержит страницы визуализацию всей доступной информации по каждому контроллеру и разделу (даже если этот раздел в данный момент не используется на объекте, но может быть задействован при расширении системы):

Рисунок 3 - Страница «MultiCluster T20»

На странице обозначено:

- Cluster Cx группа контроллеров и страница с их общими переменными
- Device_Dx дополнительная визуализация не сетевых переменных контроллера, обычно вентмашины или сложного инженерного оборудования
- Device_D7_PLK0.7_SHDN визуализация контроллера ЩУДН, этот контроллер не включён ни в один кластер
- Сч/ПД_С1,2 общая визуализация подсистемы защиты протечек отопления по счётчикам и датчикам давления на коллекторах, собранная с разных кластеров на одной странице.

5. Кластеры С1 и С2 (инженерная версия)

Страницы Cluster_C1 и Cluster_C2 (рисунок 4) визуализируют две группы контроллеров 6 шт и 8шт EasyHome EH0.1 — EH4.3 (с IP-адресами 192.168.55.101 - .143 соответственно) , управляющих освещением и некоторыми инженерными функциями. На страницах Cluster_C1 и C2 визуализируются общие переменные кластера контроллеров C1 или C2.

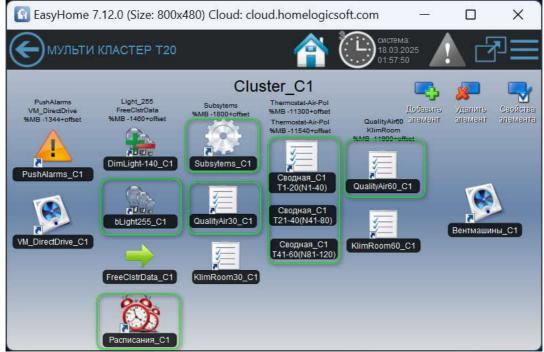


Рисунок 4 - Страница «Cluster_C1»

В разделе Cluster_C1 и C2 используются разделы (рисунок 5):

- Света bLight255 Вкл и Выкл всех групп света по внутренним номерам
- Subsystems Протечки, Сигналы Аварий, Датчики, Нагрузки
- QualityAir Влажности воздуха с мультидатчиков
- KlimateRoom Температуры воздуха и показатели CO2 с мультидатчков
- Расписания Расписание 1 для переключения освещения по расписанию

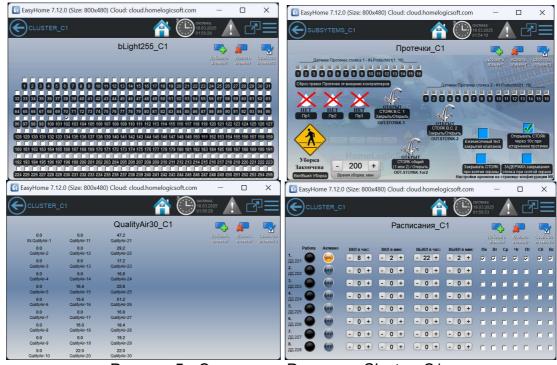


Рисунок 5 - Страницы «Разделов Cluster C1»

6. Кластер СЗ (инженерная версия) и кондиционеры серверной

Страницы Cluster_C3 (рисунок 6) визуализируют группу контроллеров 5шт ОВЕН-ПЛК PLK0.3, PLK0.6, PLK0.5, PLK2.1, PLK3.1 (с IP-адресами 192.168.55.103, .105, .106, .120, .130 соответственно), управляющих различными инженерными функциями, представлены на пользовательской версии интерфейса в более понятной форме..

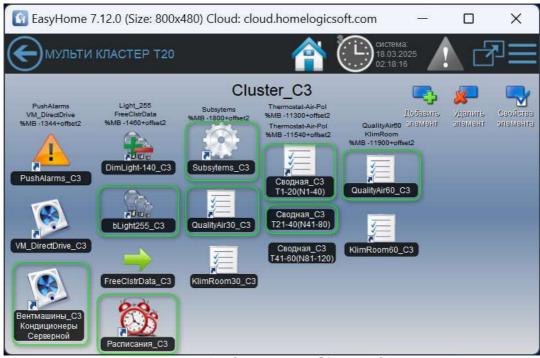


Рисунок 6 - Страница «Cluster C3»

Контроллер PLK0.3 управляет кондиционерами Серверной и на страницах Вентмашины PLK0.3 TelecomS представлена визуализация этих установок (рисунок 7 и 8):

Рисунок 7 - Страница «Вентмашины TelecomS»

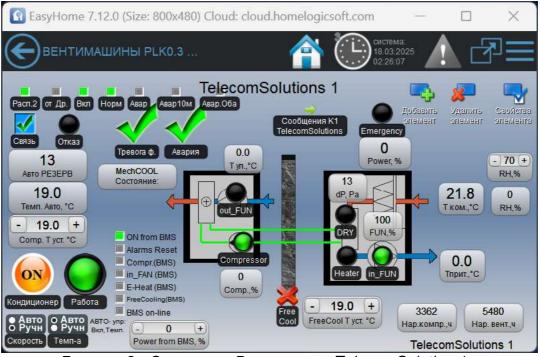


Рисунок 8 - Страница «Вентмашина TelecomSolution 1»

- Функция АВТО Температура устанавливает желаемую уставку 19С.
- Функция АВТО Скорость определяет ЗАПУСК И РАБОТУ установки TelecomS-1 от Расписания 2. Так же функция АВТО Скорость обеспечивает запуск TelecomS-1 в случае, если Расписание 2 выключено (и должна работать TelekomS-2), но дублирующая установка не вышла на рабочий режим по параметру отклонения Т комнатой от Т желаемой в течении 10ти минут. В верху слева находятся индикаторы функции АВТО Скорость. Функция АВТО Скорость симметрична для TelecomS-2

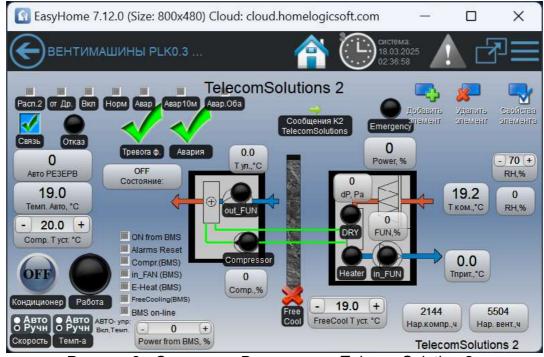


Рисунок 9 - Страница «Вентмашина TelecomSolution 2»

Функция АВТО Скорость работает по Расписанию2 (рисунок 10) в PLK0.3 (Ведущий ПЛК в кластере С3), если включена Работа по расписанию, то функция

запускает TelecomS -1, если Работа по Расписанию2_С3 выключена, то функция запускает TelecomS-2. Если запуск другой установки по её Расписанию не произошёл (отклонение параметра более 10ти минут), то функция запускает свою установку (рисунок 11).

Рисунок 10 - Страница «Распсиания-С3»

Рисунок 11 - Страницы «Комплексная работа TelecomS-1 и -2 с ABTO чередованием и резервированием»

7. Кластер С3 и С4 (инженерная версия) и кондиционеры кроссовых

Для обеспечения чередования и автоматического резерва кондиционеров в кроссовых используется штатный алгоритм управления климатом в комнате для запуска и остановки кондиционера и выдача целевых уставок этим виртуальным комнатам с разницей 3C.

• Функция АВТО для кондиционеров кроссовых: Основной кондиционер определяется по сигналу Работа от Расписания5_С3 для кроссовых 2го, 3го и 4го этажей и по сигналу Работа от Расписания5_С4 для кроссовой 1го этажа. Для Резервного кондиционера по Расписанию5 ставится уставка на +3С выше от желаемой (желаемая для функции АВТО выставляется в термостатах Туст_С3-40,41,42 и Туст_С4-39). И если температура поддерживается нормально с помощью Основного кондиционера, то Резервный кондиционер автоматически выключается. Если температура не может поддерживаться Основным и температура вырастает на +3С больше, то Резервный подхватывает работу на охлаждение (рисунок 12).



Рисунок 12 – Взаимосвязь функции АВТО для кондиционеров кроссовой 1го этажа.

8. Кластер С4 устройства PLK5.3 (инженерная версия) и вентустановки

Страницы Cluster_C4 (рисунок 6) визуализируют группу контроллеров 4шт ОВЕН-ПЛК PLK1.1, PLK5.1, PLK5.2, PLK5.3, (с IP-адресами 192.168.55.110, .151, .152, .153 соответственно) , управляющих различными инженерными функциями, некоторые представлены на пользовательской версии интерфейса в более понятной форме.

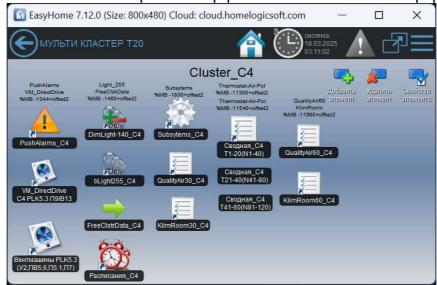


Рисунок 13 - Страница «Cluster C4»

В составе инженерного оборудования есть вентустановка П9/В13 с прямым управлением механическими элементами от контроллера. Кроме штатных алгоритмов управления вентмашиной, реализовано управление от внешних переключателей на щите Местный (Принудительный Пуск/Останов) и Автомат (Запуск и дистанционное управление).

Функция АВТО Скорость и АВТО Температура П9 выдают фиксированные настройки температуры и скорости из страницы "Настройки С4 PLK5.3 П9".

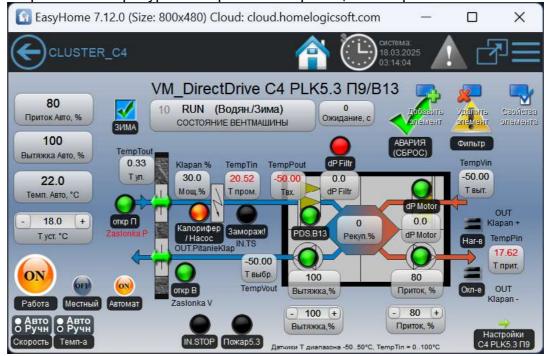


Рисунок 14 - Страница «П9/В13»

В составе инженерного оборудования подключенного к PLK5.3 есть вентустановки ПВ-5, ПВ-6, П-5.1, П-7 с управлением по интерфейсу Modbus от контроллера. Так же есть несколько вытяжек, свободных и сопряжённых с приточными установками через сигнал Работа от соответствующей вентустановки. Сопряжение вытяжки с вент установкой работает при включении переключателя Автомат для соответствующей вытяжки. Так же реализовано выключение всего оборудования от сигнала Пожар5.3 на данный контроллер.

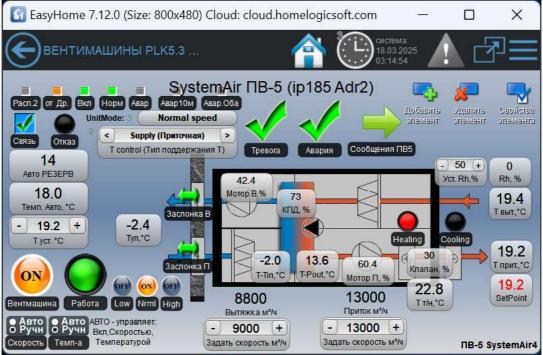


Рисунок 15 – Страница «Вентмашины PLK5.3 - ПВ-5, ПВ-6, П-5.1, П-7 и вытяжки В12, В6.1, В5.1, В7, состояния ручек и сигналов запуска»

Для вентустановок и вытяжек реализовано управление от внешних переключателей на щите Местный (Принудительный Пуск/Останов) и Автомат (Запуск и дистанционное управление) и переключатель-селектор Основной/Резерв для режима принудительного пуска с выключателя Местный.

- Для увлажнителя функция АВТО Скорость У2 не используется.
- Функция АВТО Температура У2 для увлажнителя запускают алгоритм поддержания влажности, если хоть одна ПВ-5 или ПВ-6 работает и выдаёт поток, иначе выдаёт Увлажнителю запрос на 0% (см. описание алгоритма в соответствующем разделе ниже).
- Для вентустановок ПВ-5 и ПВ-6 функция АВТО Температура устанавливает фиксированную Т уставку 18С.
- Функция АВТО Скорость ПВ-5 может работать, если позволяет ручка Автомат, функция работает от Расписание2_С4, если включена Работа по Расписания, то запускается ПВ-5, если выключена Работа по Расписанию2, то функия проверяет запущена ли ПВ-6 и выдаёт ли параметр скорости притока более 10% номинала. В противном случае реализуется запуск ПВ-5 с флагом "от Др." для запуска функции Авто РЕЗЕРВА другой вентмашины.
- Функция АВТО Скорость ПВ-6 работает симметрично функции для ПВ-5, но запускает ПВ-6 если вЫключена Работа по Расписанию2 для ПВ-5 и резервирует работу ПВ-5.

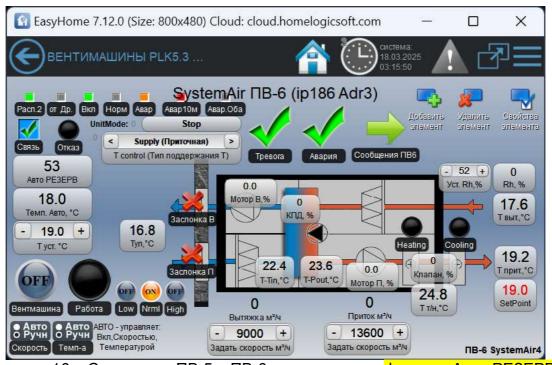


Рисунок 16 – Страницы «ПВ-5 и ПВ-6 и индикаторов функции Авто РЕЗЕРВ»

Рисунок 17 — Страницы «настройка скорости ПВ-5 и ПВ-6 для функции Авто Скорость совмещённой с функцией Авто РЕЗЕРВ»

- Для вентустановок П-5.1 и П-7 функция АВТО Температура устанавливает фиксированную Т уставку 18С.
- Функция АВТО Скорость для П-5.1 запускает вентмашину на "Скорость макс. м3/ч" при включении индикатора Работа от Расписание3_С4, при выключении индикатора Работа Расписание3_С4 функция АВТО Скорость устанавливает "Скорость мин. м3/ч".
- Функция АВТО Скорость для П-7 работает аналогично П-5.1 по Расписание4 С4.

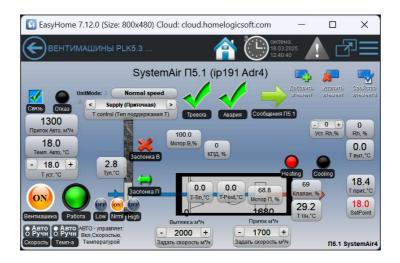


Рисунок 18 — Страницы «вентустановка П-5.1 и настройка скорости для функции Авто Скорость работающей от Расписания3 С4»

9. Кластер C4 устройства D5(PLK5.2) (инженерная версия) и вентустановки

Контроллер PLK5.2 входит в кластер контроллеров C4 и участвует в общих алгоритмах по работе с общими сигналами с датчиков аварий, температур и т.д. Но есть некоторое оборудование подключенное к данному контроллеру для управления, визуализация которого не входит в общие переменные. Это оборудование вынесено в отдельную страницу для визуализации в системе.

Рисунок 19 - Страница «Cluster C4 Device D5»

В составе инженерного оборудования есть вентустановка П8/В14 с прямым управлением механическими элементами. Кроме штатных алгоритмов управления вентмашиной, реализовано управление от внешних переключателей на щите Местный (Принудительный Пуск/Останов) и Автомат (Запуск и дистанционное управление и управление от выключателя).

Функция АВТО Скорость и АВТО Температура П8 выдают фиксированные настройки температуры и скорости из страницы "Настройки С4 PLK5.2 П8".

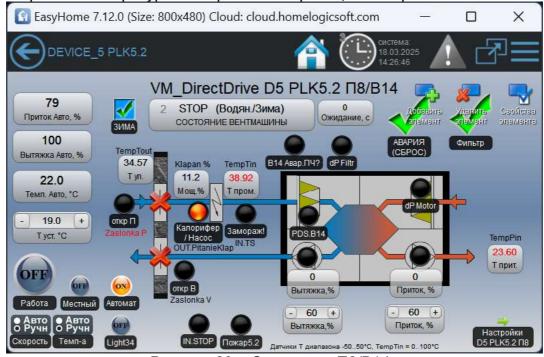


Рисунок 20 - Страница «П8/В14»

В составе инженерного оборудования подключенного к PLK5.2 есть вентустановки П-2.1, П-4.1, ПВ-4 с управлением по интерфейсу Modbus от контроллера. Так же есть несколько вытяжек, свободных и сопряжённых с приточными установками через сигнал Работа от соответствующей вентустановки. Сопряжение вытяжки с вент установкой работает при включении переключателя Автомат для соответствующей вытяжки.

Для вентустановок и вытяжек реализовано управление от внешних переключателей на щите Местный (Принудительный Пуск/Останов) и Автомат (Запуск и дистанционное управление).

Так же реализовано выключение всего оборудования от сигнала Пожар5.2 на данный контроллер.

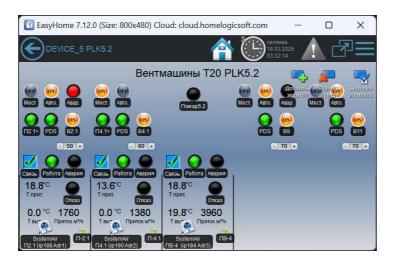


Рисунок 21 — Страницы «вентустановок П-2.1, П-4.1, ПВ-4 и вытяжек В2.1, В4.1, В9, В11, состояния ручек и сигналов запуска»

- Для вентустановок П-2.1, П-4.1, ПВ-4 функция АВТО Температура устанавливает фиксированную Т уставку 18С.
- Функция АВТО Скорость для П-2.1 запускает вентмашину на "Скорость макс. м3/ч" при включении индикатора Работа от Расписание2_D5, при выключении индикатора Работа Расписание2_D5 функция АВТО Скорость устанавливает "Скорость мин. м3/ч".
- Функция АВТО Скорость для П-4.1 аналогична предыдущей для П-2.1, но срабатывает от Расписание 3 D5.
- Функция АВТО Скорость для ПВ-4 аналогична предыдущей для П-2.1, но срабатывает от Расписание4 D5.

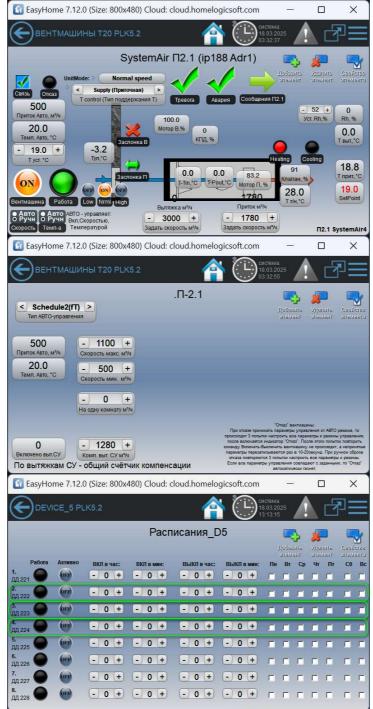


Рисунок 19 — Страницы «вентустановок П-2.1, П-4.1, ПВ-4 и настроек скорости и Расписания для функции <mark>АВТО Скорость</mark>»

10. Кластер С4 устройства D6(PLK5.1) (инженерная версия) и вентустановки

Контроллер PLK5.1 входит в кластер контроллеров С4 и участвует в общих алгоритмах по работе с общими сигналами с датчиков аварий, температур и т.д. Но есть некоторое оборудование подключенное к данному контроллеру для управления, визуализация которого не входит в общие переменные. Это оборудование вынесено в отдельную страницу для визуализации в системе.

Рисунок 22 – Страница «Cluster_C4 Device_D6»

В составе инженерного оборудования подключенного к PLK5.1 есть вентустановки с ПВ-2, ПВ-3, П-1, П-3.1 управлением по интерфейсу Modbus от контроллеров. Так же есть несколько вытяжек, свободных и сопряжённых с приточными установками через сигнал Работа от соответствующей вентустановки. Сопряжение вытяжки с вент установкой работает при включении переключателя Автомат для соответствующей вытяжки. Так же реализовано выключение всего оборудования от сигнала Пожар5.1 на данный контроллер.

Рисунок 23 – Страница «Вентмашины ПВ-2, ПВ-3, П-1, П-3.1 и вытяжки В8, В1, В3.1, состояния ручек и сигналов запуска»

Для вентустановок и вытяжек реализовано управление от внешних переключателей на щите Местный (Принудительный Пуск/Останов) и Автомат (Запуск и дистанционное управление) и переключатель-селектор Основной/Резерв для режима принудительного пуска с выключателя Местный.

Все функции ABTO Температура и ABTO Скорость совпадают с описанием для PLK5.3 из Раздела 8. Единственное отличие – Расписание запуска используется локальное Расписание для данного контроллера:

Расписание 2 D6 – для чередования и РЕЗЕРВА вентустановок ПВ-2/ПВ-3

Расписание3_D6 – для работы по расписанию вентустановки П-1

Расписание 4 D6 – для работы по расписанию вентустановки П-3.1



Рисунок 24 — Страница «Расписания_D6 для функций ABTO Скорость для вентмашин PLK5.1 - ПВ-2, ПВ-3, П-1, П-3.1»

11. Вентиляция зала ПВ5/ПВ6 – поддержание влажности и температуры

По зданию в воздуховодах и в помещениях расположены датчики температуры и влажности, они подключены по RS485 к различным контролерам системы и визуализируются в разделе общих переменных в таблицах Сводная_С3 и Сводная_С4. Датчики относящиеся к системе вентиляции зала вынесены на страницу "Вентсистема зала ПВ5/ПВ6" (рисунок 25). На этой странице есть краткая визуализация всего оборудования относящегося к этой системе вентиляции:

- 1) Вентмашины ПВ-5 и ПВ-6 снабжают систему вентиляции воздухом
 - Имеют функцию ABTO Скорость для автоматического чередования и ввода резерва (см.Раздел выше)
- 2) Увлажнитель У2 служит для повышения влажности в отопительный сезон
 - Функция АВТО температура запускает (при работе хотя бы одной вентмашины) ПИД-регулирование на управление производительностью увлажнителя У2. Регулирование происходит по 4-м точкам, по минимальному значению:
 - 1. RH0 = влажностьТЕ6/МЕ1.П5 ограничивается на уровне 70..90%, чтоб не допустить конденсата в воздуховодах.
 - 2. RH1 = максимальная влажность из 4х приточных каналов П5 ограничивается на уровне 70..90%, чтоб не допустить росы на приточных решётках
 - 3. RH2 = влажность TE3/ME.B5 воздух удаляемый из помещения показывает общую влажность воздуха для поддержания желаемой 50%
 - 4. RH3 = максимальная влажность из всех датчиков помещения, может быть измеряемой для поддержания 50% или ограничительной, чтоб не допустить конденсата на стенах.
- 3) Этажные догреватели EKx.П5 служат для догрева промежуточного воздуха от вентмашин до необходимой температуры для данного помещения. Нагрев разрешён при наличии сигнала с датчика потока воздуха FSx.П5 и галки EKx.П5 Оп и отсутствии сигнала Пожар5.2 и Т притока менее 35С и ТК в норме.

Рисунок 25 – Страница «Вентсистема зала ПВ5/ПВ6»

12. Вентиляция фондов ПВ2/ПВ3 – поддержание влажности и температуры

По зданию в воздуховодах и в помещениях расположены датчики температуры и влажности, они подключены по RS485 к различным контролерам системы и визуализируются в разделе общих переменных в таблицах Сводная_С3 и Сводная_С4. Датчики относящиеся к системе вентиляции зала вынесены на страницу "Вентсистема фондов ПВ2/ПВ3" (рисунок 26). На этой странице есть краткая визуализация всего оборудования относящегося к этой системе вентиляции:

- 1) Вентмашины ПВ-2 и ПВ-3 снабжают систему вентиляции воздухом
 - Имеют функцию ABTO Скорость для автоматического чередования и ввода резерва (см.Раздел выше)
- 2) Увлажнитель У1 служит для повышения влажности в отопительный сезон
 - Функция АВТО температура запускает (при работе хотя бы одной вентмашины) ПИД-регулирование на управление производительностью увлажнителя У1. Регулирование происходит по 4-м точкам, по минимальному значению:
 - 1. RH0 = влажностьТЕ6/МЕ1.П2 ограничивается на уровне 70..90%, чтоб не допустить конденсата в воздуховодах.
 - 2. RH1 = максимальная влажность из 11ти приточных каналов П2 ограничивается на уровне 70..90%, чтоб не допустить росы на приточных решётках
 - 3. RH2 = максимальная влажность из 11ти вытяжных каналов B2 воздух удаляемый из помещения показывает общую влажность воздуха для поддержания желаемой 50%
 - 4. RH3 = максимальная влажность из 11ти датчиков в помещениях, может быть измеряемой для поддержания 50% или ограничительной, чтоб не допустить конденсата на стенах.
- 3) Этажные догреватели EKx.П2 служат для догрева промежуточного воздуха от вентмашин до необходимой температуры для данного помещения. Нагрев разрешён при наличии сигнала с датчика потока воздуха FSx и галки Вкл и отсутствии сигнала Пожар5.1 и Т притока менее 35С. Регулятор работает по минимуму от термостатов канала ПРИТОКА и канала ВЫТЯЖКИ, что позволяет использовать догреватель для нагрева всего помещения по Т выт.

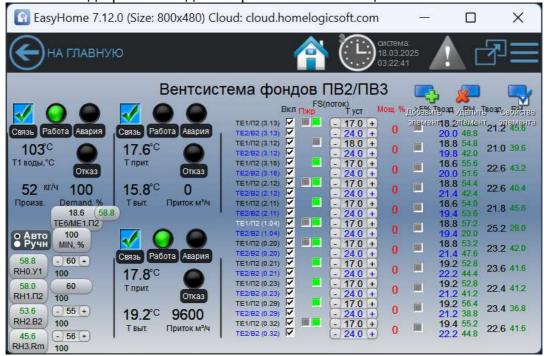


Рисунок 26 - Страница «Вентсистема фондов ПВ2/ПВ3»

13. Система защиты протечек стояков по счётчикам и датчикм давления

В коллекторах отопления установлены счётчики для учёта потока и датчики давления на прямом и на обратном направлении. Это позволяет реализовать косвенный алгоритм защиты от протечек системы отопления.

Контроллер измеряет период между импульсами счёта и сравнивает период на прямом и на обратном трубопроводе коллектора отопления. При расхождении периодов счёта более настройки "Разница, с" на время длительнее "Задержка, с" контроллер генерирует сигнал виртуальной протечки.

Контроллер измеряет разницу между давлениями на прямом и на обратном трубопроводе коллектора отопления. При расхождении давлений более настройки "Разница, %" на время длительнее "Задержка, с" контроллер генерирует сигнал виртуальной протечки.

Полученные сигналы виртуальных протечек учитываются вместе с сигналами протечек от датчиков протечек и анализируются отдельно контроллерами управляющими перекрыванием стояков.

При возникновении ложных протечек на каком-то коллекторе (например, при заклинивании счётчика) можно отключить алгоритм галкой Работа на странице общей визуализации виртуальных протечек коллекторов отопления.

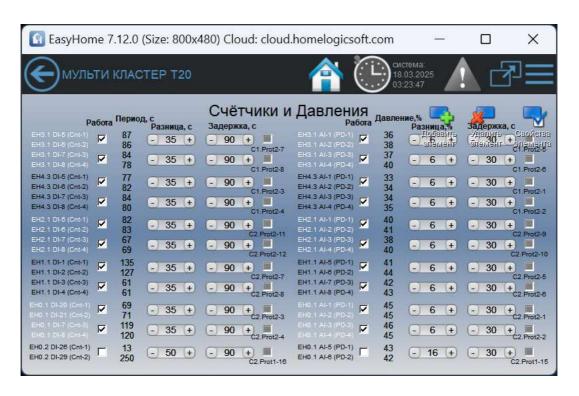


Рисунок 27 – Страница «Счётчики и Давления» с виртуальными протечками

14. Щит управления дренажными насосами и алгоритм

В щите ЩУДН установлен контроллер OBEH ПЛК100 PLK0.7 который реализует алгоритм работы щита управления дренажными насосами с учётом чередования и резервирования и положения управляющих ручек ABTO и РУЧН и HACOC1 и HACOC2, так же ведёт подсчёт времени наработки. Диспетчеризация состояния щита доступна через Ethernet сеть.

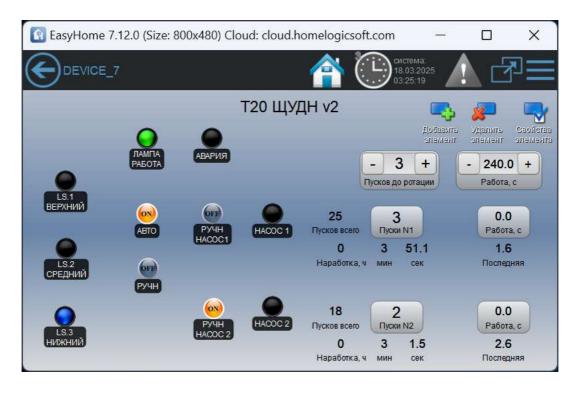


Рисунок 28 - Страница «Щит ЩУДН»

Функции, заложенные в алгоритм управления (выписка ТЗ от 03.11.2024):

- Уровень высокий LS.1 -> Выдача 2х Аварий на DO-4,6
- Уровень высокий LS.1 -> В АВТО и есть LS.2 и LS.3 -> ВКЛ другой Насос
- Уровень средний LS.2 -> в АВТО Пуск/Стоп одного насоса. После сработки поплавка через 4 минуты или сработки уровень высокий LS.1 ротация на другой насос до отключения уровень средний LS.2
- Уровень низкий LS.3 -> При отключенном сигнале насос в авто не должен запускаться
- Переключатель ЩУДН Местный-Стоп-Автомат -> РУЧН работа насосов от SA2.1; АВТО Насосы по LS.2 и оба по LS.1; СМЕНА Насоса1-2 каждый 5й пуск (память насоса)
- Переключатель ЩУДН Hacoc1-Стоп-Hacoc2 -> РУЧН Пуск/Стоп Hacoca 1 2
- Выходы Насос 1 2 имеют таймер защиты от быстрого отключения 2 сек

В контроллере PLK0.7 для ЩУДН реализован отдельный журнал состояний и событий, в памяти ПЛК сохраняется последнее событие, интерфейс EasyHome может вести архивирование этого журнала на ПК, если он запущен и подключен к PLK0.7.

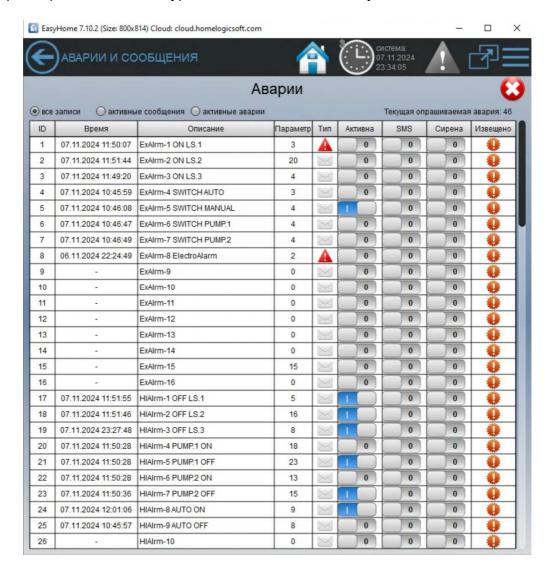


Рисунок 29 - Страница «Журнал событий Щита ЩУДН»

15. Климат и бытовые кондиционеры

Раздел «Климат» (рисунки 30-32) имеет трех/двух уровневую иерархию: «Выбор этажа дома», «Выбор помещения на этаже» и непосредственно «Помещение». В инженерном интерфейсе так же представлены сводные таблицы по массивам зон климата. Раздел имеет следующую функциональность:

- Индикатор статистических параметров температуры в помещении
- Запись и воспроизведение Глобальных СЦЕН КЛИМАТА по всем помещениям одновременно
- Изменение желаемой температуры воздуха и режима кондиционера в помещениях отдельно
- Управление всеми зонами климата сразу
- Выбор автоматического или ручного управления кондиционером

Рисунок 30 - Страницы «Отопление - все этажи дома»

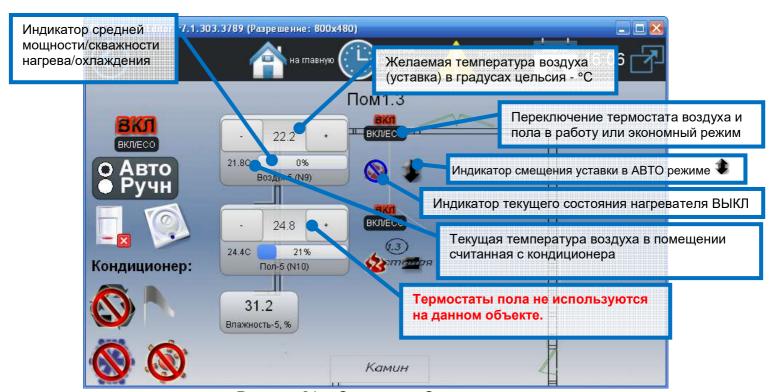


Рисунок 31 - Страница «Отопление комнаты»

На странице «Отопление комнаты» для помещения (рисунок 10), обычно размещены два термостата – для Воздуха и Пола. Кнопка общего включения климата в комфортный или экономный режим и органы управления вентиляцией и кондиционированием (рисунок 11).

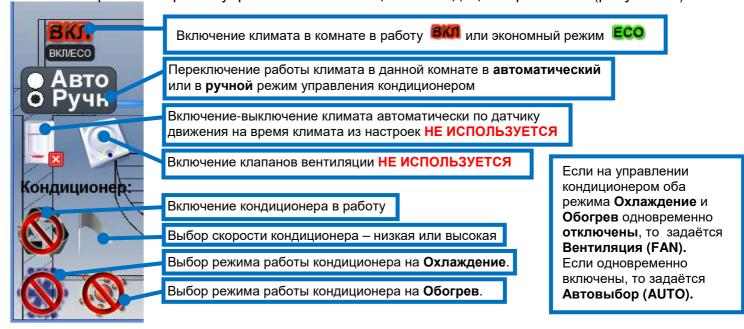


Рисунок 32 – Страница «Управление вентиляцией и кондиционированием»

Пользователь может **создавать и сохранять СЦЕНЫ КЛИМАТА**. Они являются глобальными, т.е. запоминают настройки всех термостатов Воздуха и Пола по всем помещениям — **Вкл/Эко** и желаемая **уставка температуры**. При запуске сохранённой СЦЕНЫ КЛИМАТА на всех термостатах воспроизводится запомненное состояние (кроме термостатов настроенных как исключение).

Рисунок 33 - Страница «Отопление - Настройки»

На странице «Отопление - Настройки» (рисунок 12) представлены некоторые настройки системы климата:

В **РУЧНОМ** режиме регулирования климата Термостат Воздуха (радиаторы, конвекторы), Термостат Пола и Кондиционер работают независимо друг от друга по выставленным пользователем уставкам температуры воздуха и пола. Если включен кондиционер, уставка Т воздуха для Термостата радиатора понижается на 2°С (**dT-AirOff** - температура отключения радиатора), что бы не мешать работе кондиционера. А в кондиционер отправляется уставка с учётом корректировки "Комп. Уставки Конд-а".

16. Автоматическое управление климатом

Данная функция включается для каждого помещения раздельно переключателем **Ручн**. – **Авто**.

В автоматическом режиме идёт проверка температуры воздуха на перегрев: Если температура воздуха в течении установленного **времени АВТО режима** более на **Т отклонения АВТО** от желаемой уставки или отклонение мгновенно превысило порог на 3°C (**dT3** - порог перегрева), то:

- Для помещений без обогрева пола включается кондиционер на установленную температуру + Т Комп.УставкиКонд-ра, а уставка термостата обогрева воздуха радиаторами понижается, что бы не мешать работе кондиционера на охлаждение.
- В) Для помещений с обогревом пола, первым шагом понижается установленная температура пола, пока температура воздуха выше желаемой. Таким образом начинает работать поддержание желаемой Т воздуха за счёт изменения Т пола.
 - а. Если температура воздуха через установленное **время АВТО режима** опять более на **T отклоненя АВТО** желаемой температуры воздуха, происходит следующий шаг в режим A) на включение кондиционера.
- С) Когда температура в течении установленного **времени ABTO режима** менее на **Т отклоненя ABTO** желаемой температуры воздуха или мгновенно стала ниже на 1°C (**dT1** порог выключения кондиционера), происходит выключение кондиционера и запуск термостата воздуха и пола на желаемые уставки температур исходный режим.
- D) Аналогично включается режим обогрева кондиционером при нехватке нагрева температуры воздуха радиаторами/полами, но уставка Термостата воздуха в этом режиме повышается на 2°C (dT-AirOff - температура отключения радиатора) для определения, когда нагрев радиаторами стал эффективен и нужда в нагреве кондиционером отпадает.

Режим работы кондиционера в АВТО режиме:

Если текущая температура выше желаемой на 1°С (**dT-FAN_Hi** – порог высокой скорости кондиционера), то кондиционер работает на максимальную скорость охлаждения.

Если текущая температура выше желаемой, но не более чем на 1°С (**dT-FAN_Hi** – порог высокой скорости кондиционера), то кондиционер работает на минимальную скорость охлаждения.

Если текущая температура ниже желаемой, то кондиционер работает в режиме вентилятора без охлаждения и через некоторое время полностью выключается.

Более подробное описание алгоритма автоматической работы климата см. в инструкции инсталлятора **EH Installer Manual**.

17. Системные аварии

Страница «Аварии» позволяет просмотреть общий список аварий и сообщений (рисунок 34). Сообщения разделены три типа: активные аварии, активные сообщения, все записи (все аварии и сообщения системы).

Желтый треугольный индикатор показывает наличие сообщений категории **активные аварии**, подсвечивается и работает как переход на страницу журнала сообщений, когда есть активные аварии. Общее количество сообщений в системе до 254, в зависимости от выбранных настроек. К каждой аварии выдаётся время

появления и параметр. Параметр, в зависимости от назначения сообщения, может быть: кол-во срабатываний или датчиков, номер датчика, текущее значение величины и т.д.

Список сообщений считывается последовательно при первом подключении интерфейса к ПЛК и затем оперативно обновляется по вновь появившемся аварийным сообщениям.

Сброс Активных сообщений выполняется автоматически или вручную, нажатием переключателя в колонке **Активна**. В колонке **SMS** можно выбрать сообщения, для которых будет приходить SMS оповещение о появлении или пропаже такого сообщения (см. раздел 14 «GSM модем»). В колонке **Сирена** можно выбрать сообщения для активации общего индикатора/сирены от всех систем.

Для прокрутки таблицы перетаскивайте её за середину на любом устройстве. 🛐 EasyHome 7.12.0 (Size: 840x480) Cloud: cloud.homelogicsoft.com МУЛЬТИ КЛАСТЕР Т20 Аварии активные сообщения
 активные аварии Текущая опрашиваемая авария: 43 Параметр Тип Активна SMS Сирена Извещено 0 0 0 25.03.2025 00:20:46 ЕхАІ-1 ПОЖАРНАЯ СИГНАЛИЗАЦИЯ 0 0 0 ЕхАІ-2 Авария ЩУДН Индикатор Включение СМС 0 Ex. 2 Sololift2 (0.35) 0 0 0 выполненного оповещения для 0 0 0 ExAl-4 KHC (0.03) 0 CMC сообщения 0 ExAl-5 LS.n.0.1 0 n оповещения 0 ExAl-6 LS.n.0.2 0 25.03.2025 00:36:50 ExAl-7 Sololift2 (0.27) 0 0 n 0 0 8 ExAl-8 ЩУВиД-5.1 Авария B1,B3.1 0 0 9 ExAl-9 ЩУВиД-5.2 Авария B2.1,9 10 25.03.2025 07:20:27 ЕхАІ-10 ЩУВиД-5.2 Авария В5.1,6.1,12 1 0 0 Включение общей 0 0 0 11 ExAI-11 ЩУВиД-5.2 Авария EK1-4.П5(ТК) 0 сигнализации для 0 0 12 ExAl-12 ЩУВиД-0.1 Авария КЗ.1,КЗ.2(TeleS) 0 сообщения 13 ExAl-13 Авария ВТЗ-1,2,3,4(Frico)

Рисунок 34 – «Аварии» - Системные сообщения

Все аварии архивируются в папке \Alarms\Alarm_20_03_25.csv, где ежедневно записывается новый файл со списком изменений аварий за сутки (если разрешено архивирование в настройках).

18. Журнал аварий

Ниже приведён журнал аварий на момент 25.03.2025. Со временем список аварий может дополняться и расширяться, актуальный список можно увидеть в дубликате файла конфигурации config cleared.xml в папке актуального проекта.

```
id="1" "ExAl-1 ПОЖАРНАЯ СИГНАЛИЗАЦИЯ"
id="2" "ExAl-2 Авария ЩУДН"
id="3" "ExAl-3 Sololift2 (0.35)"
id="4" "ExAl-4 KHC (0.03)"
id="5" "ExAl-5 LS.n.0.1"
id="6" "ExAl-6 LS.n.0.2"
id="7" "ExAl-7 Sololift2 (0.27)"
id="8" "ExAl-8 ЩУВиД-5.1 Авария В1,В3.1"
id="9" "ExAl-9 ЩУВиД-5.2 Авария В2.1,9"
id="10" "ExAl-10 ЩУВиД-5.2 Авария В5.1,6.1,12"
id="11" "ExAl-11 ЩУВиД-5.2 Авария ЕК1-4.П5(ТК)"
id="12" "ExAl-12 ЩУВиД-0.1 Авария К3.1,К3.2(TeleS)"
id="13" "ExAl-13 Авария ВТЗ-1,2,3,4(Frico)"
id="14" "ExAl-14 Авария РЕЗЕРВА КЗ.1,КЗ.2(TeleS)" (Если отказ обоих в АВТО)
id="15" "ExAl-15 Авария РЕЗЕРВА ПВ-2/ПВ-3" (Если отказ обоих в АВТО)
id="16" "ExAl-16 Авария РЕЗЕРВА ПВ-5/ПВ-6" (Если отказ обоих в АВТО)
id="17" "HIAI-1 Авария Увлаж-1"
id="18" "HIAI-2 Авария ВМ ПВ-2"
id="19" "HIAI-3 Авария ВМ ПВ-3"
id="20" "HIAI-4 Авария ВМ П-1"
id="21" "HIAI-5 Авария ВМ П-3.1"
id="22" "HIAI-6 Авария ВМ П-2.1"
id="23" "HIAI-7 Авария ВМ П-4.1"
id="24" "HIAI-8 Авария ВМ ПВ-4"
id="25" "HIAI-9 Авария Увлаж-2"
id="26" "HIAI-10 Авария ВМ ПВ-5"
id="27" "HIAI-11 Авария ВМ ПВ-6"
id="28" "HIAI-12 Авария ВМ П-5.1"
id="29" "HIAI-13 Авария ВМ П-7"
id="30" "HIAI-14 Авария ВМ П9/В13"
id="31" "HIAI-15 Авария ВМ П8/В14"
id="32" "HIAI-16 Авария ВМ П6.1В10"
id="33" "Неправильно синхронизированы часы N"
id="34" "Неправильная запись в контроллер N"
id="35" "Неверное время на часах ПЛК N"
id="36" "Питание АСУ - включение N"
id="44" "Электроавария ID"
id="45" "Электроаварий всего:"
id="61" "Аварийная Т-возд. )2-46( в пом.N"
id="62" "Аварийых Т-возд. всего:"
id="68" "Протечка! Датчик N"
id="69" "Неисправен датчик СО N"
id="70" "Превышение порога CO! датчик N"
```


- id="80" "Тревога Кондиционера LG AC Smart5"
- id="81" "Недоступен Кондиционер LG AC Smart5"
- id="117" "Гл.Сцена СВЕТА N"
- id="118" "Мини Сцена СВЕТА"
- id="119" "М.Сц.Света в Пом."
- id="120" "СВЕТ по ДД N"
- id="121" "Сцена Климата N"
- id="122" "Электро Сцена N"
- id="123" "Мультисцена N"
- id="124" "----- "
- id="149" "Протечка N1 дат.Пр.0.02.2"
- id="150" "Протечка N2 дат.Пр.0.02.3"
- id="151" "Протечка N3 дат.Пр.0.03"
- id="152" "Протечка N4 дат.Пр.0.04"
- id="153" "Протечка N5 дат.Пр.0.05"
- id="154" "Протечка N6 дат.Пр.0.6"
- id="155" "Протечка N7 дат.Пр.0.16"
- id="156" "Протечка N8 дат.Пр.0.19"
- id="157" "Протечка N9 дат.LS-1.1 CO1.1"
- id="158" "Протечка N10 дат.LS-0.1 CO0.1"
- id="159" "Протечка N11 дат.LS-0.1.1..2 "
- id="160" "Протечка N12 дат.LS-0.2 CO0.2"
- id="161" "Протечка N13 дат.LS-2.1 CO2.1"
- id="162" "Протечка N14 дат.LS-2.2 CO2.1"
- id="163" "Протечка N15 дат.LS-3.1 CO3.1"
- id="164" "Протечка N16 дат.LS-3.2 CO3.2"
- id="165" "Протечка N17 дат.Пр.1.08,11,16"
- id="166" "Протечка N18 дат.Пр.2.05,06,08"
- id="167" "Протечка N19 дат.Пр.3.07,08,10"
- id="168" "Протечка N20 дат.Пр.4.х"
- id="169" "Протечка N21 дат.LS-0.2-0.5"
- id="170" "Протечка N22 дат.LS-2.x"
- id="171" "Протечка N23 дат.LS-3.x"
- id="172" "Протечка N24 дат.LS-1.2 CO1.2"
- id="173" "Протечка N25 дат.LS-1.3.1..3"
- id="174" "Протечка N26 дат.CO 4.x"
- id="175" "Протечка N27 дат.CO 3.x"
- id="176" "Протечка N28 дат.СО кафе"
- id="177" "Протечка N29 дат.СО 0.х"
- id="178" "Протечка N30 дат.CO 1.x"
- id="179" "Протечка N31 дат.СО 2.х"
- id="180" "Протечка N32 дат.---"
- id="181" "Электроавария N1 в Щите АСУ-4"
- id="182" "Электроавария N2 в Щите АСУ-3"
- id="183" "Электроавария N3 в Щите АСУ-0"
- id="184" "Электроавария N4 в Щите АСУ-1"
- id="185" "Электроавария N5 в Щите АСУ-2"
- id="186" "Электроавария N6 в Щите ЩУВ-П6.1/В10"
- id="187" "Электроавария N7 в Щите ЩУВиД-0.2"

id="188" "Электроавария N8 в Щите ЩУВиД-0.1" id="189" "Электроавария N9 в Щите ЩУВиД-1.1" id="190" "Электроавария N10 в Щите ЩУВиД-2.1" id="191" "Электроавария N11 в Щите ЩУВиД-3.1" id="192" "Электроавария N12 в Щите ЩУВиД-5.2" id="193" "Электроавария N13 в Щите ЩУВиД-5.1" id="194" "Электроавария N14 в Щите ЩУДН" id="195" "Эл-я N15 BattLow в Щите АСУ-4" id="196" "Эл-я N16 BattLow в Щите АСУ-3" id="197" "Эл-я N17 BattLow в Щите АСУ-0" id="198" "Эл-я N18 BattLow в Щите АСУ-1" id="199" "Эл-я N19 BattLow в Щите АСУ-2" id="200" "Эл-я N20 BattLow в Щите ЩУВ-П6.1/В10" id="201" "Эл-я N21 BattLow в Щите ЩУВиД-0.2" id="202" "Эл-я N22 BattLow в Щите ЩУВиД-0.1" id="203" "Эл-я N23 BattLow в Щите ЩУВиД-1.1" id="204" "Эл-я N24 BattLow в Щите ЩУВиД-2.1" id="205" "Эл-я N25 BattLow в Щите ЩУВиД-3.1" id="206" "Эл-я N26 BattLow в Щите ЩУВиД-5.2" id="207" "Эл-я N27 BattLow в Щите ЩУВиД-5.1" id="208" "Электроавария N28 ВРУ-1.x,2.x" id="209" "Электроавария N29 ПЧ В14 ЩУВиД-5.2"